Лазер или ОКГ – оптический квантовый генератор когерентного монохроматического излучения. Что означают эти понятия? Придется вспомнить физику.

Современные понятия в физике наделяют элементарные частицы света (фотоны) свойствами либо волны, либо корпускул (частиц), так как свет проявляет свойства волны в одном случае – при явлениях интерференции и дифракции. В другом случае свет проявляет квантовые свойства. Например, в случае явления фотоэффекта о свете можно говорить, что он состоит из частичек, т. е. квантов. Однако квантовый и волновой подходы к природе света не противоречат свойствам света, а успешно дополняют друг друга.

В соответствии с постулатами квантовой физики любое вещество состоит из атомов и молекул. Каждая система атомов (молекул) обладает изначально запасами внутренней энергии. Атомы и молекулы вещества образуют так называемые микросистемы.

Микросистемы подчиняются законам квантовой механики и обладают основным свойством квантовых систем – дискретностью (т. е. прерывистостью) их энергетических состояний. Иначе говоря, энергия этих микросистем изменяется как бы скачками и принимает лишь некоторые определенные значения – энергетические уровни. Атомы (молекулы) веществ в микросистемах тоже находятся на определенных уровнях энергии, а переход с одного уровня на другой совершается мгновенно, скачком. Переход атома на верхний уровень сопровождается поглощением фотона света (т. е. кванта), а при переходе атома на нижний уровень энергии – выбросом фотона света или его испусканием. При этом энергия поглощенного испускаемого фотона равна разности энергий уровней атома, между которыми совершается квантовый скачок.

При естественных условиях атомы вещества самопроизвольно (спонтанно) переходят с уровня на уровень, излучая или поглощая кванты света – фотоны, например, при излучении света в электрической лампочке.

Предположим, имеется вещество, состоящее из атомов с энергетическими уровнями Е1, и Е2, причем Е1 меньше Е2. При облучении вещества, атомы которого находятся на уровне Е2, фотонами с энергией Е=(Е2 – Е,) атомы вещества могут перейти обратно на уровень Е1. При переходе происходит выброс фотонов, т. е. вынужденное излучение света. Появившийся новый фотон света будет точной копией того фотона, который вызвал его появление. Это явление и есть когерентность. Далее появление нового фотона света приводит к образованию двух таких же фотонов (рис. 11).

Рис. 11.

Рис. 11.

Схема поглощения кванта света (а) и вынужденного испускания света (б)

При определенных условиях, если среда является активной, процессы вынужденного излучения фотонов преобладают над процессами поглощения, процесс переходит в лавинообразное испускание вторичных фотонов. Но фотоны света испускаются во всех направлениях. Чтобы упорядочить процесс генерации лазерного излучения в заданном направлении, используют оптические резонаторы. Оптический резонатор – это два зеркала с общей оптической осью, которая фиксирует в пространстве направление лазерного луча.

Направление генерации лазерного излучения обозначено на рис. 12 стрелкой.

Рис. 12.

Рис. 12.

Развитие фотонной лавины вдоль оси резонатора О—О:

а – начало процесса; б – конец процесса

Спонтанные фотоны, случайно родившиеся в направлении О—О, будут проходить внутри активного элемента относительно длинный путь, который многократно увеличивается вследствие отражения от зеркал резонатора. Взаимодействуя с возбужденными активными центрами, эти фотоны, набирая энергию, инициируют мощную лавину вынужденно испущенных фотонов, которые образуют лазерный луч. Спонтанные фотоны, которые родились в других направлениях, равно как и соответствующие им лавины вторичных фотонов, пройдут внутри активного элемента сравнительно короткий путь и выйдут за его пределы.

Таким образом, зеркала оптического резонатора выделяют в пространстве определенное направление, вдоль которого реализуются наиболее благоприятные условия для развития фотонных лавин. Это и есть направление лазерного луча, который выходит из резонатора через одно из зеркал. Для облегчения процесса выхода одно из зеркал делают частично прозрачным для лазерного излучения.

Принципиальная схема лазера проста и показана на рисунке 13.

Теперь осталось ответить на вопрос о монохроматичности лазерного излучения.

По-гречески – «монос» означает «один», а «хромос» значит цвет. Таким образом, монохроматичность означает, что луч лазера – одноцветный. В физическом плане высокая монохроматичность проявляется в том, что луч лазера имеет практически одну длину волны. Элементарные волны света («волновые цуги») кроме монохроматичности идеально когерентны, т. е. распространяются в одном и том же направлении, имеют одинаковую длину волны и находятся в фазе друг с другом.

Высокая степень когерентности позволяет сфокусировать лазерный луч в пятно, равное длине волны излучения – т. е. порядка 1–10 микрон.

Если мощность лазера, например на основе СО2–1 кВт, сфокусировать на площадке диаметром в 1 мм, то получим интенсивность лазерного луча 105 Вт/см2.

Эта очень высокая концентрация тепловой энергии позволяет испарять все земные элементы и естественно сваривать при определенных условиях металлы. Современные лазерные установки способны выстреливать эту колоссальную мощность за доли секунды в импульсе.

Остается добавить, что в качестве активных сред можно использовать:

• кристаллы (искусственные или естественные);

• специальные стекла;

• полупроводники;

• жидкие среды (растворы специальных красителей);

• газовые среды.

В соответствии с используемой активной средой лазеры подразделяют на твердотельные, жидкостные и газовые.

Рис. 13.

Рис. 13.

Принципиальная схема оптического лазера:

1 – активный элемент;

2 – непрозрачное зеркало;

3 – полупрозрачное зеркало;

4 – устройство накачки.

Вернемся к рисунку 13. Для чего используется накачка и что это такое? Когда говорят о накачке, то подразумевают введение энергии извне внутрь квантовой системы для возбуждения энергетических уровней, о чем говорилось выше. Можно еще сказать, что накачка необходима для возбуждения активной среды лазера.

Энергетическая накачка активных элементов лазера производится в импульсном или постоянном режиме. В импульсном режиме используются специальные лампы-вспышки, а в постоянном режиме – специальные лампы-осветители.

В сварочной технике применяют, в основном, твердотельные лазеры на кристаллах неодима с гранатом, неодимовых стеклах, на кристаллах рубина. В них применяется оптическая накачка с помощью ксеноновых ламп.

Используются для сварки и газовые лазеры. Мощные газовые лазеры изготавливают на основе газовых смесей с применением углекислого газа – СО2. Для газовых лазеров применяют в качестве энергетической накачки электрический высоковольтный разряд.

Похожие книги из библиотеки

Великолепные модели штор и гардин

Декорирование окон – важная деталь интерьера. Без нее интерьер никогда не приобретет законченный вид. Но для того, чтобы этого добиться, необязательно привлекать дизайнера или тратить много средств на приобретение дорогостоящих жалюзи, гардин и штор. С помощью этой книги вы сможете сами сделать прекрасные шторы, гардины и занавески. Вы найдете много полезной информации о тканях, из которых можно сшить шторы, и сможете выбрать и сделать самостоятельно ту модель, которая вам больше всего подойдет. Шторы, сшитые собственноручно, внесут в интерьер оригинальность и неповторимость.

Как сделать деревенский дом уютным и комфортным

Благоустроенный деревенский дом-усадьба подходит человеку любого темперамента: любителю тихого семейного бытия, индивидуалисту и активному, общительному последователю здорового образа жизни. Но все равно большинство людей в XXI веке предпочитают «дикой» романтике комфорт. Сбежавший из города в деревню Андрей Кашкаров, в течение пяти лет воссоздавший свое хозяйство в Вологодской области и прекрасно наладивший контакт с местными жителями, решил поделиться своими идеями по реконструкции дома и благоустройству придомовой территории, успешно воплощенными в жизнь, а также рассказал о многочисленных впечатлениях о российской глубинке.

Современные балконы и лоджии. Оригинальные идеи, новейшие материалы и технологии работ

Впечатление даже от самого дорогого и изысканного ремонта в квартире может быть испорчено унылым видом ободранных стен или старых, отживших свой век рам на балконе или лоджии. И это вполне закономерно, ведь эти сооружения являются неотъемлемой частью жилища, а потому должны служить его гармоничным продолжением. Балкон или лоджию можно остеклить, причем, рамы могут быть деревянными, из алюминиевого профиля либо полимерных материалов, сделать продолжением комнаты или превратить, например, в зимний сад или пентхаус. Все зависит от вкуса и предпочтений владельца. Тем не менее, планируя переустройство лоджии или балкона, необходимо также учитывать ряд объективных факторов, таких как степень освещенности помещения, к которому примыкает балкон или лоджия, шумоизоляцию, если окна квартиры выходят на оживленную улицу, теплоизоляцию, светодизайн, архитектуру строения, материал, который применялся при его возведении, и т. д. Все это важно, потому что правильно подобранная и выполненная отделка не только украсит Ваше жилище, но и сделает его более прочным, долговечным и комфортным. Таким образом, планируя ремонт на балконе или лоджии, необходимо учесть все за и против и только потом приступать к работе. Эта книга поможет Вам не только выбрать наиболее приемлемый вариант благоустройства балкона или лоджии, но и претворить его в жизнь собственными руками.

Полная энциклопедия домашнего мастера. Строительство. Электричество. Водоснабжение. Утепление. Гидроизоляция. Сварочные работы

Эта книга станет верным помощником и надежным консультантом домашнего мастера! Секреты каменщиков, кровельщиков, штукатуров и сварщиков и огромное количество информации по современным материалам и технологиям тепло– и гидроизоляции, оборудованию системы водоснабжения и прокладке электрической проводки. [ul]Как смонтировать подвесной и натяжной потолок Как установить и собрать электрощит Как установить унитаз и душевую кабину Как утеплить внутренние и наружные стены Как ликвидировать мостики холода Как выбрать трубы для водопровода и канализации[/ul] Дом, квартира, балкон или ванная комната – руки мастера нужны везде. Эта энциклопедия поможет им стать золотыми!