§ 4. Жаростойкий бетон

Жаростойкий бетон предназначается для промышленных агрегатов (облицовки котлов, футеровки печей и т. п.) и строительных конструкций, подверженных нагреванию (например, для дымовых труб). При действии высокой температуры на цементный камень происходит обезвоживание кристаллогидратов и разложение гидрата окиси кальция с образованием СаО. Окись кальция при воздействии влаги гидратируется с увеличением объема и вызывает растрескивание бетона. Поэтому в жаростойкий бетон на портландцементе вводят тонко измельченные материалы, содержащие активный кремнезем Si02, который реагирует с СаО при температуре 700 — 900°С и в результате химических реакций, протекающих в твердом состоянии, связывает окись кальция.

Рис. 105. Изделия и конструкции из жаростойкого бетона: о — двухслойный блок (основной и теплоизоляционный слои): б — футеровка печи из сборных элементов; в — элемент дымового борова

Цементы. Жаростойкий бетон изготовляют на портландцементе с активной минеральной добавкой (пемзы, золы, доменного гранулированного шлака, шамота). Шлакопортландцемент уже содержит добавку доменного гранулированного шлака и может успешно применяться при температурах до 700°С. Портландцемент и шлакопортландцемент нельзя применять для жаростойкого бетона, подвергающегося кислой коррозии (например, действию сернистого ангидрида в дымовых трубах). В этом случае следует применить бетон на жидком стекле. Он хорошо противостоит кислотной коррозии и сохраняет свою прочность при нагреве до 1000°С.

Глиноземистый цемент можно применять без тонкомолотой добавки, поскольку при его твердении не образуется гидрат окиси кальция. Еще большей огнеупорностью (не ниже 1580°С) обладает высокоглиноземистый цемент с содержанием глинозема 65 — 80%; в сочетании с высокоогнеупорным заполнителем его применяют при температурах до 1700°С.

Столь же высокой огнеупорности позволяют достигнуть фосфатные и алюмофосфатные связующие: фосфорная кислота (Н3РО4), алюмофосфаты А1(НгР04)з и магнийфосфаты Mg(H2P04h. Жаростойкие бетоны на фосфатных связующих можно применять при температурах до 1700°С, они имеют небольшую огневую усадку, термически стойки, хорошо сопротивляются истиранию.

Заполнитель для жаростойкого бетона должен быть не только стойким при высоких температурах, но и обладать равномерным температурным расширением.

Бескварцевые изверженные горные породы как плотные (сиенит, диорит, диабаз, габбро), так и пористые (пемза, вулканические туфы, пеплы) можно использовать для жаростойкого бетона, применяемого при температурах до 700°С.

Для бетона, работающего при температурах 700 — 900°С, целесообразно применять бой обычного глиняного кирпича и доменные отвальные шлаки с модулем основности не более 1, не подверженные распаду.

При более высоких температурах заполнителем служат огнеупорные материалы: кусковой шамот, хромитовая руда, бой шамотных, хроммагнезитовых и других огнеупорных изделий.

Легкий жаростойкий бетон на пористом заполнителе имеет объемную массу менее 2100 кг/м3, его теплопроводность в 1,5 — 2 раза меньше, чем у тяжелого бетона. Применяют пористые заполнители, выдерживающие действие высоких температур (700 — 1000°С): керамзит, вспученный перлит, вермикулит, вулканический туф.

Ячеистый жаростойкий бетон отличается небольшой массой (500 — 1200 кг/м3) и малой теплопроводностью.

Сборные элементы и монолитные конструкции из жаростойкого бетона широко применяют в различных отраслях промышленности: энергетической, черной и цветной металлургии, в химической и нефтеперерабатывающей, в производстве строительных материалов (рис. 105); используют взамен полукислых и шамотных изделий, предназначенных для температур 800 — 1400°С, а также вместо высокоогнеупорных изделий при температуре выше 1400°С.

Замена только 150 тыс. м3 огнеупорной кладки жаростойким бетоном и железобетоном дает экономию около 6 млн. руб. в год.

Большие работы по жаростойким бетонам проводятся под руководством Ю. П. Горлова, К. Д. Некрасова и др.