В железнодорожных мостах подвижная нагрузка в виде поезда всегда находится на двух фиксированных линиях — рельсах. Основная задача, которая ставится при проектировании моста, состоит в том, чтобы поддержать эти два рельса.
В автодорожных мостах подвижная нагрузка в виде различных автомобилей может находиться в любой точке проезжей части. Задача в этом случае состоит в том, чтобы поддержать плоскость проезда, на которой может быть расположена нагрузка.
Ширина железнодорожных мостов определяется количеством путей на мосту. В абсолютном большинстве случаев они бывают однопутные или двухпутные. Ширина автодорожных мостов в зависимости от интенсивности движения колеблется от 3,5 до нескольких десятков метров.
Подвижные нагрузки автодорожных мостов легче, чем у железнодорожных мостов. Это выражается как в величине давления на ось подвижного состава, так и в расстоянии между осями.
Характер временной нагрузки у железнодорожных мостов близок к тому, что может быть в действительности, так как движение осуществляется поездами. В автодорожных мостах движение осуществляется отдельными автомобилями и маловероятно, что на практике может произойти принимаемое в расчете сочетание самых тяжелых автомобилей с наиболее неблагоприятной расстановкой их в поперечном и продольном направлениях. В связи с этим действительные запасы в конструкциях автодорожных мостов обычно больше, чем расчетные.
В автодорожных мостах допустимы значительно большие упругие деформации, чем в железнодорожных, так как для автомобилей не требуется такая высокая точность положения пути, как для поездов.
Рассмотренные особенности влияют на конструкцию автодорожных мостов, так как в них возможно значительно большее разнообразие систем и конструктивных форм, чем в железнодорожных мостах.
Проезжая часть автодорожного моста в общем случае состоит из дорожной одежды, несущего настила и балочной клетки. Наличие всех этих элементов не обязательно. В отдельных случаях езда может происходить непосредственно по настилу без специальной одежды, а настил может опираться непосредственно на главные балки пролетного строения без балочной клетки или являться частью основной несущей конструкции и т. п.
Достоинство этой конструкции — малый вес, который составляет 150—180 кг на 1 м2, и сравнительно небольшие первоначальные затраты, но срок службы ее очень мал. При интенсивном движении верхний настил служит несколько месяцев, а при слабом один-два года. Кроме того, в сырую погоду деревянный настил становится скользким и непригодным для движения с большими скоростями.
Другим типом деревянного настила является конструкция из досок, поставленных на ребро вплотную друг к другу и покрытых асфальтом (рис. 29, б). Доски настила прибиваются друг к другу и образуют монолитную деревоплиту. Одеждой является асфальтобетон, который обладает высокими эксплуатационными качествами. Недостатками такого . настила являются опасность загнивания, недоступность осмотра, трудность ремонта. Вес его составляет 250—300 кг на 1 м2.
При всех типах одежды должен быть обеспечен отвод воды, осуществляемый обычно приданием поверхности полотна поперечных и продольных уклонов и выпуском воды в трубки.
Вес настила — одна из основных составляющих постоянной нагрузки автодорожных мостов. При малых и средних пролетах вес одежды и настила во многих случаях превышает сумму веса главных балок и временной нагрузки. Отсюда ясна важность поисков новых типов настилов с меньшим собственным весом.
Основные достоинства металлических настилов с непосредственной ездой по ним — значительное снижение веса по сравнению с существующими типами, опрятность и удобство содержания. Недостатки — большая затрата металла на настил и балочную клетку и дороговизна. Широкого распространения эти предложения не получили.
В конструкциях пролетных строений автодорожных мостов особый интерес представляет вопрос о количестве главных балок.
В 30-е годы в Германии было построено большое количество автодорожных мостов со сплошными стенками. Почти во всех этих мостах независимо от пролета (от 24 до 105 м) и ширины моста (от 10 до 21 м) пролетные строения имеют две главные балки. Это привело в ряде случаев к очень тяжелым и неэкономичным конструкциям.
Послевоенная практика проектирования в Советском Союзе большого количества автодорожных мостов со сплошными стенками показала, что применение двух балок, принятое в немецкой практике, не всегда рационально. Во многих случаях более рациональным решением является постановка нескольких главных балок с непосредственным опиранием на них железобетонной плиты. При этом отпадает необходимость в устройстве балок проезжей части и создаются наиболее благоприятные условия для использования плиты в работе главных балок.
При нескольких главных балках расположение их в поперечном сечении определяется стремлением получить наиболее экономичную и простую в изготовлении конструкцию и одинаковую расчетную нагрузку на все главные балки с тем, чтобы при одинаковом сечении материал был полностью использован во всех балках.
При этом решающее значение приобретает способ определения нагрузки на каждую балку.
В современных конструкциях при настиле из железобетонной плиты и наличии поперечных связей, перераспределяющих нагрузку между балками, принято рассматривать пролетное строение как жесткий ростверк и определять нагрузку, приходящуюся на каждую балку по методу внецентренного сжатия (рис. 32, б).
При определении нагрузок по закону рычага более нагруженными оказываются средние балки и для уравнивания нагрузок требуется сближение средних балок; при определении нагрузок по методу внецентренного сжатия более нагруженными оказываются крайние балки и для уравнивания расчетных нагрузок необходимо раздвигать средние балки и сближать крайние.
Совместная работа балок в связи с наличием железобетонной плиты и поперечных связей несомненна. Однако количественная оценка характера совместной работы представляет собой известные трудности, поскольку он различен по длине пролетного строения — в середине пролета, где наибольший прогиб, и на опоре, где балки имеют жесткое опирание, картина распределения разная.
Широкое применение ЭЦВМ создает условия для более точных расчетов с учетом жесткости элементов и характера пространственной работы.
В современной отечественной практике металлические пролетные строения автодорожных мостов с разрезными балками находят применение преимущественно при полетах от 40 до 60 м.
При разработке Ленгипротрансмостом серии типовых пролетных строений, рабочие чертежи которых выпущены в 1968, г., специально исследовали вопрос о наиболее рациональном типе поперечного сечения — количестве главных балок и их расстановке; было признано наиболее целесообразным при ширине проезжей части 8 м принять сечение из двух главных балок с расстоянием между ними 6,4 м со средним прогоном (см. рис. 35), опирающимся на верхний узел поперечных связей.
Ленгипротрансмостом разработаны проекты разрезных пролетных строений с пролетами 42 и 63 м, ширина проезжей части принята 8,0 м, тротуаров 1,0 и 1,5 м.
Пролетные строения сварные с монтажными стыками на высокопрочных болтах. Длина блоков 16,05 и 10,5 м.
В качестве материалов для главных балок и прогона принята низколегированная сталь марки 10Г2С1Д для сварных конструкций с расчетным сопротивлением при действии осевых сил 2700 кГ/см2 и при изгибе 2800 кГ/см2.
Собственный вес металлической конструкции и вес железобетонной плиты воспринимаются металлическими балками.
Вес блоков тротуаров, покрытия проезжей части, перил, смотровых приспособлений и временная нагрузка воспринимаются объединенным сечением металлической балки с железобетонной плитой. Жесткие упоры, приваренные к поясам главных балок, состоят из вертикального листа толщиной 20 или 25 мм в зависимости от величины сдвигающей силы, усиленного двумя треугольными ребрами (рис. 33, а).
В плитах предусмотрены окна, в которые входят упоры, после чего окна заполняют бетоном.
Покрытие состоит из одного слоя асфальтобетона толщиной 5 см, укладываемого на цементнобетонный защитный слой толщиной 4 см. Гидроизоляция проезжей части термопластичная из битумной мастики и арматурных прослоек стеклосетчатой ткани. Поверхности асфальтобетона придан поперечный уклон 2%, вода отводится в водоотводные трубки.
Вертикальная стенка усилена ребрами жесткости, установленными на расстоянии 175 см по всей длине балки. Ребра жесткости приварены к верхнему поясу непосредственно, в примыкании к нижнему поясу установлены прокладки.
Прогон принят двутаврового сечения с вертикальным листом 400x10 мм и горизонтальными листами 260x16 мм. Монтажная длина прогонов принята по длине блоков главной балки.
Прикрепление прогона к распорке связей осуществляется четырьмя болтами (рис. 37), соединяющими пояс прогона с распоркой, с установкой между ними прокладки. Стыки прогона перекрываются (рис. 38) парными вертикальными и горизонтальными накладками. В местах стыков прогонов установлены дополнительно консольные листы, приваренные к вертикальной накладке и горизонтальной прокладке.
В вертикальных плоскостях пролетного строения через 5,25 м установлены поперечные связи в виде сквозной конструкции (см. рис. 35) с треугольной решеткой, на верхний узел которой опирается прогон. Верхняя распорка связей принята из пары уголков 100х100х10, нижняя — из уголков 125х125х10, раскосы — из парных уголков 90х90х9.
Соединение элементов связей между собой производится на сварке, решетка поступает на монтаж в готовом виде.
Опорные поперечные связи, используемые в качестве домкратной балки, имеют сквозную конструкцию, аналогичную поперечным связям в пролете, но * отличаются некоторыми изменениями геометрической схемы) вызванными смещением нижних узлов к местам установки домкратов. Увеличены сечения элементов и количество болтов прикрепления к главным балкам. В местах установки домкратов предусмотрено усиление конструкции.