1.2.4. Работа устройства в режиме перегрузки

На дополнительной обмотке W2 согласующего трансформатора наводится ЭДС, форма которой полностью повторяет вид сигнала управления. Импульсный сигнал детектируется выпрямителем на D8 и фильтруется конденсатором С5.

Если источник питания работает в режиме перегрузки, то постепенно напряжение на конденсаторе достигнет уровня, при котором на базе Q1 появится открывающий положительный потенциал.

Нарастающее напряжение на базе Q1 плавно открывает транзистор, и напряжение на его коллекторе понижается. В коллекторной цепи Ql включен делитель на резисторах R2 и R3, средняя точка которого подсоединена к базе Q2. Понижение напряжения на коллекторе Q2 через R3 передается на базу Q2, открывая его. Собственное сопротивление транзистора Q2 уменьшается, положительное напряжение на его коллекторе начинает расти.

В том случае, если источник перегрузки вторичной цепи не устранен, рост напряжения на базе Q2 приведет к полному его открыванию и переключению транзистора в насыщение. Напряжение на аноде диода D4 будет равно опорному, имеющему значение +5 В, за вычетом падения на открытом транзисторе Q2. Через открытый диод D4 напряжение опорного источника поступает на вывод TL494/4, где его уровень будет составлять примерно +3,9 В. Это значение превышает максимальный уровень пилообразного напряжения, поэтому формирование импульсного сигнала на выходах ШИМ-преобразователя будет блокировано. Импульсы возбуждения не будут подаваться на усилитель мощности, передача энергии через импульсный силовой трансформатор во вторичную цепь прекратится.

Постепенно произойдет спад всех вторичных напряжений до нулевого уровня.

Возобновление работы преобразователя возможно только после переключения сетевого выключателя и нормальной генерации импульса начального питания ШИМ-преобразователя.

Аналогичное воздействие на транзисторные каскады схемы защиты будет вызвано резким падением уровня любого из каналов с отрицательными номиналами напряжений, подключенных к схеме через диод D3 и резистор R7. Принцип действия узла защиты от КЗ по слаботочным каналам основан на функционировании вентильной схемы, основным элементом которой является диод D2. Диод включен между датчиками уровней напряжений отрицательных уровней и базой транзистора Q1.

Катоды диодов D2 и D5 соединены по схеме «ИЛИ». Переключение транзисторных ключей на Q1 и Q2 будет выполняться, если в точке соединения диодов появится потенциал, достаточный для открывания транзистора Q1. При нормальной работе основных каналов, когда ширина импульсов управления укладывается в допуск, такое напряжение может быть подано только через диод D2.

Уровень напряжения на аноде D2 определяется соотношением сопротивлений резисторов R6 и R5. В точке соединения резистора R7 и диода D3 напряжение имеет значение -5,8 В. Резистор R5 одним выводом подключен к источнику опорного напряжения микросхемы TL494 с номинальным уровнем +5 В, вторым — к аноду D2.

Для того чтобы на катод диода D2 не поступало положительное напряжение, потенциал на аноде D2 должен быть нулевым или отрицательным. Для большей чувствительности схемы защиты потенциал выбирается именно нулевым.

Для поддержания нулевого уровня на аноде диода D2 у резистора R6 должно быть сопротивление на 15 % больше, чем у R5.

В установившемся режиме, когда все напряжения имеют номинальный уровень, элементы, соединенные с D2, не влияют на состояние ключевой транзисторной схемы.

Если в нагрузочной цепи каналов -5 или -12 В возникает ситуация, при которой происходит значительное падение уровней этих напряжений, осуществляется перераспределение напряжений в делителе из R5 и R6. Отрицательный потенциал, компенсирующий положительное напряжение опорного источника, в точку соединения этих резисторов поступать не будет. На анод D2 будет проходить только положительное напряжение через R5, которым последовательно откроются диод D2, а затем оба транзисторных ключа на Q1 и Q2. Это приведет к появлению напряжения +3,9 В на выводе 4 микросхемы TL494 и вызовет блокировку ШИМ-преобразователя и отключение источника питания.

Диоды D1, D2 и D5 выполняют функции элементов развязки и исключают взаимное влияние формируемых датчиками напряжений, возникающих при различных перегрузках источника питания.

Один из вариантов узла полной защиты источника питания по основным каналам вторичных напряжений представлен на рис. 1.9.

Главная особенность данной схемы в том, что из нее полностью исключены элементы, используемые в каскадах защиты слаботочных каналов с отрицательными уровнями напряжений. Узел состоит из датчиков ширины импульсов управления и датчиков повышения уровней напряжений по каналам +5 В и +12 В. Оценка функционирования маломощных каналов может производиться по ширине импульсов. Такое схемотехническое решение может быть использовано в источнике питания, где применена дополнительная стабилизация вторичных каналов отрицательных напряжений.

Интегральные стабилизаторы имеют внутренние схемы ограничения выходного тока в случае возникновения перегрузок.

Рис. 1.9.

Рис. 1.9.

Вариант узла полной защиты источника питания по основным каналам вторичных напряжений

Внимание, важно!

Включение защиты интегрального стабилизатора может быть вызвано также перегревом корпуса стабилизатора.

При получении сигнала об отклонении работы преобразователя от номинального режима схема защиты вырабатывает сигнал положительного уровня, который подается на вывод 4 микросхемы TL494. Остальные внутренние элементы ШИМ-преобразователя для его блокировки не используются. Формирование сигнала о нарушении рабочего режима производится двухкаскадным усилителем на транзисторах Q1 и Q2. В исходном состоянии оба транзистора закрыты.

Напряжение на выводе 4 схемы TL494 задается соотношением сопротивлений резистивного делителя, состоящего из RIO и R11. Сопротивление резистора RIO значительно больше, чем у R11, поэтому в установившемся режиме, в отсутствие перегрузки, напряжение на TL494/4 близко к потенциалу общего провода.

В качестве датчика ширины импульсов управления используются трансформатор Т1 и элементы R3, VD4 и С4. Первичная обмотка трансформатора Т1 включена в диагональ полумостового усилителя мощности последовательно с первичной обмоткой силового импульсного трансформатора Т2. К вторичной обмотке трансформатора Т1 подключена выпрямительная схема с однополупериодным выпрямителем на диоде D4 и емкостным фильтром — конденсатором С4. На конденсаторе С4 выделяется положительное напряжение, пропорциональное длительности импульсов управления.

К резистору R11, кроме сопротивления RIO, присоединена цепь, состоящая из резисторов R4, R6 и диода D6.

Параметры резисторов R4 и R6 подобраны так, чтобы колебания напряжения на конденсаторе С4 не влияли на уровень напряжения на резисторе R11. Анод диода D6 соединен с коллектором транзистора Q4 и через резистор R9 с базой транзистора Q3, являющегося первым ключевым элементом в цепи формирования сигнала блокировки микросхемы TL494.

Прежде чем положительное напряжение на аноде D6 нарастет до уровня его отпирания, оно постепенно откроет транзистор Q3. Коллектор транзистора Q4 соединен через резистор R9 с базой Q3, поэтому изменение напряжения на коллекторе первого транзистора будет сразу передаваться на базу второго. Повышение напряжения в этой точке может быть следствием увеличения нагрузки вторичных цепей и расширением положительных импульсов управления. Постепенное открывание транзистора Q3 сопровождается понижением его коллекторного напряжения и потенциала базы Q4. Передача положительного напряжения происходит через открывающийся транзистор Q4 на базу Q3.

Один транзистор подпитывает базу второго, процесс открывания обоих активных элементов развивается лавинообразно и в итоге приводит к полному открыванию двух транзисторов. Через насыщенный транзистор Q4, диод D4 и резистор R11 протекает ток.

Уровень напряжения, который устанавливается после открывания Q4 на резисторе R11, составляет примерно +3,9 В. Это напряжение превышает амплитуду пилообразного сигнала, действующего на инвертирующем входе внутреннего компаратора «мертвой зоны» DA1, входящего в состав микросхемы TL494. Происходят блокировка пилообразного напряжения на этом компараторе и остановка генерации импульсов на выходах микросхемы ШИМ-преобразователя. Такая последовательность действий осуществляется при увеличении нагрузки источника питания, когда система управления стремится компенсировать падение выходных уровней напряжений, увеличивая интервал активного состояния силовых транзисторов.

Цепи на элементах D1-D3, R1 и R2 выполняют функции детекторов увеличения напряжений основных вторичных каналов выше установленного предела. К выходам каналов с напряжениями +5 и + 12 В подключены пороговые схемы на стабилитронах D1 и D3 соответственно.

В данном случае используется свойство стабилитронов пропускать электрический ток, когда напряжение на них превышает уровень стабилизации. Пока напряжения на стабилитронах будут ниже уровня стабилизации, ток через них протекать не будет, и на положительной обкладке конденсатора С5 потенциал останется близким нулю. Диод D5 закрыт, и воздействия на базу транзистора Q3 не оказывается.

Пороговый уровень включения защитного механизма по вторичному каналу +5 В составляет +6,3 В. Фиксация возрастания напряжения выше номинального значения по каналу +12 В должна производиться на уровне примерно +15 В. Напряжение стабилизации D1 составляет +5,1 В, а диода D3 — до +14 В.

Если одно из положительных напряжений вторичных каналов достигает своего предельного уровня, то происходит «пробой» соответствующего стабилитрона и напряжение на конденсаторе С5 повышается, открывая диод D5. Отпирание диода и появление положительного потенциала на базе Q3 происходят, когда на конденсаторе С5 напряжение достигает положительного уровня, равного 0,7–0,8 В.

Если напряжение продолжает повышаться, то растет положительный уровень и на базе Q3. Выполняются условия для переключения бистабильной транзисторной схемы на ключах Q3 и Q4. Каждый из транзисторов открывается, и на вывод 4 микросхемы TL494 подается положительное напряжение +3,9 В, появление которого вызывает прекращение работы импульсного преобразователя.

Для устойчивой работы схемы защиты в базовую цепь транзистора Q3 включен керамический конденсатор С6. Он обеспечивает фильтрацию кратковременных импульсных помех, которые могут привести к переключению транзисторной схемы. В начальный момент, когда преобразователь подключает схему управления к напряжению питания, благодаря наличию конденсатора С5 происходит задержка включения транзисторного каскада. Диод D5 применяется для развязки каскадов, вырабатывающих сигналы воздействия на базу Q3 при различных проявлениях отклонения вторичных напряжений от номинальных уровней.

Во всех примерах схем защиты датчики и схемы воздействия на элементы управления преобразователем строились на основе дискретных элементов.

В следующих примерах приведены схемы, в которых в качестве первичных узлов, формирующих сигналы отключения ШИМ-преобразователя, применяются интегральные компараторы. Первая из таких схем приведена на рис. 1.10.

Рис. 1.10.

Рис. 1.10.

Вариант схемы с интегральным компаратором

На схеме (рис. 1.10) показаны узлы, рассмотренные и в предыдущих вариантах исполнения каскадов защиты. Схема осуществляет контроль за длительностью управляющих импульсов, за коротким замыканием по каналам с отрицательными номиналами напряжений, а также слежение за превышением установленного уровня напряжения в канале +5 В.

Взаимодействие с микросхемой ШИМ-управления TL494 выполняется только по входу 4. Использование внутреннего усилителя DA4 для принудительного ограничения ширины импульсов управления не предусмотрено. В каскаде защиты используются два компаратора DA1 и DA2 из микросхемы типа LM339, выходы которых объединены по схеме «ИЛИ». В установившемся режиме оба выхода имеют высокий уровень.

Транзистор Q1 при этом закрыт, а напряжение на выводе TL494/4 определяется падением напряжения на резисторе R14, вызванным протеканием через него входного тока.

Датчик контроля длительности импульсов управления (трансформатор Т1 и элементы D3, D4, RIO, R7 и С1) введен в первичную цепь преобразователя. Первичная обмотка трансформатора Т1 включена в диагональ полумостового усилителя.

Через эту обмотку протекает тот же ток, что и через первичную обмотку силового импульсного трансформатора Т2.

Форма сигнала на Т1 полностью совпадает с импульсами управления преобразователем. Трехуровневый импульсный сигнал появляется на вторичной обмотке трансформатора Т1. Вторичная обмотка имеет три вывода. Со среднего вывода снимается сигнальное напряжение. Крайние выводы обмотки подключены к катодам диодов D3 и D4 двухполупериодного выпрямителя. Аноды диодов соединены с общим проводом вторичной цепи.

На среднем выводе обмотки W2 присутствуют импульсы положительной полярности. Частота следования импульсов в этой точке в два раза превышает частоту следования импульсов по каждому из выходов микросхемы TL494.

Импульсное напряжение сглаживается RC фильтром на элементах R7 и С1. Уровень напряжения на конденсаторе С1 зависит от длительности импульсов управления преобразователем. Повышение нагрузки вторичных цепей автоматически приводит к росту этого напряжения.

Конденсатор С1 подключен к одному из выводов резистора R4. Второй вывод резистора R4 через диод D1 подсоединен к шине вторичного напряжения канала +5 В. Резистивным делителем, образованным элементами R4-R6, задается уровень на инвертирующем входе компаратора DA1/4, входящего в состав микросхемы типа LM339.

Компаратор производит сравнение этого напряжения с потенциалом на DA1/5, установленным резистивным делителем на R8, R9. Делитель включен между выходом опорного напряжения, вырабатываемого микросхемой TL494 на выводе 4, и общим проводом вторичной цепи. Средняя точка делителя присоединена к неинвертирующему входу компаратора DA1/5. На резисторе R4 происходит суммирование части вторичного напряжения от канала +5 В и напряжения, поступающего от датчика ширины импульсов управления, на трансформаторе Т1.

Сумма напряжений делится пропорционально величинам сопротивлений резисторов R5 и R6.

Точка соединения этих резисторов подключена к входу компаратора DA1/4. При нормальном рабочем режиме источника питания уровень опорного напряжения на входе DA1/5 несколько больше, чем на входе DA1/4. Напряжение на выходе компаратора близко по значению к опорному. Повышение одного из напряжений, суммируемых на R4, вызовет пропорциональное возрастание потенциала на DA1/4. Когда напряжение на инвертирующем входе компаратора станет больше, чем на другом его входе, произойдет быстрое переключение компаратора.

На выходе установится низкий уровень. Нагрузкой, соединенной с выходами компараторов, являются последовательно соединенные резисторы R11 и R12. К точке их соединения присоединена база транзистора Q1. Когда происходит переключение выхода компаратора от высокого уровня к низкому, база Q1 оказывается под открывающим потенциалом. Транзистор Q1 открывается, напряжение на его коллекторе повышается. Возрастающее напряжение с коллектора Q1 подается через диод D5 на вход компаратора DA2/8.

Повышение напряжения на входе компаратора DA2/8 вызывает его переключение. С этого момента выходы обоих компараторов имеют низкие уровни.

Высокий уровень напряжения на выводе TL494/4 приводит к отключению ШИМ-преобразователя в соответствии с описанной выше последовательностью действий внутри TL494.

Начальное переключение компаратора DA1 происходит либо при повышении выходного уровня во вторичном канале +5 В, либо из-за увеличения нагрузки по основным вторичным каналам сверх установленного предела. Компаратор DA1 совмещает в себе функции вторичного датчика уровня напряжения в канале +5 В и длительности импульсов управления усилителем мощности.

Похожие книги из библиотеки

Внутренняя отделка. Современные материалы и технологии

На страницах данной книги вы найдете обширную информацию по всем видам отделочных работ. Классический и эксклюзивный ремонт стен и потолков, красивые и качественные напольные покрытия, революционные технологии и современные материалы - обо всем этом, а также о многом другом вы узнаете со страниц этого издания. Руководствуясь данной книгой, вы сможете не только самостоятельно отремонтировать квартиру или дом, но и разобраться в многообразии представленных на современном строительном рынке отделочных материалов.

Телевизионные антенны

Наша книга предназначена в помощь не только домашнему мастеру, но и тем, кто хочет, не прибегая к посторонней помощи, своими руками изготовить и установить антенны индивидуального пользования.

Обои, драпировки

«Обои, драпировки» – еще одна книга из серии «Советы домашнему мастеру». В ней рассказывается о том, как самостоятельно отделать стены и потолки квартиры или дома обоями, а также красиво задрапировать окна, дверные проемы и другие архитектурные элементы помещения. В книге описывается техника выполнения работ, перечисляются необходимые инструменты и вспомогательные материалы и приводятся сведения о том, как их использовать.

Современные потолки своими руками

Отделка потолка является важным этапом в ремонте жилого или офисного помещения. Эта книга поможет выбрать наиболее подходящий вид потолочной отделки или фальш-потолка, отвечающих современным требованиям. Инструкция и рисунки облегчат выполнение подготовительных, монтажных и отделочных работ с потолком.