В атмосферном воздухе, а следовательно, и в воздухе помещений всегда содержится определенное количество водяного пара.

Количество влаги в граммах, содержащееся в 1 м3 воздуха, называется объемной концентрацией пара или абсолютной влажностью f в г/м3. Водяной пар, входящий в состав паровоздушной смеси занимает тот же объем v, что и сама смесь; температура Т пара и смеси одинакова.

Энергетический уровень молекул водяного пара, содержащихся во влажном воздухе, выражается парциальным давлением е1



где Ме — масса водяного пара, кг; ?м — молекулярный вес, кг/моль: R — универсальная газовая постоянная, кГ-м/град·моль, или мм рт. ст·м3/град·моль.

Физическая размерность парциального давления зависит от того, в каких единицах выражены давление и объем, входящие в универсальную газовую постоянную.

Если давление измеряется в кГ/м2, то парциальное давление имеет такую же размерность; при измерении давления в мм рт. ст. парциальное давление выражается в этих же единицах.

В строительной теплофизике для парциального давления водяного пара обычно принимается размерность, выраженная в мм рт. ст.

Величина парциального давления и разность этих давлений в смежных сечениях рассматриваемой материальной системы используются для расчетов диффузии водяного пара внутри ограждающих конструкций. Величина парциального давления дает представление о количестве и кинетической энергии водяного пара, содержащегося в воздухе; количество это выражается в единицах, измеряющих давление или энергию пара.

Сумма парциальных давлений пара и воздуха равна полному давлению паровоздушной смеси



Парциальное давление водяного пара, как и абсолютная влажность паровоздушной смеси, не может возрастать беспредельно в атмосферном воздухе с определенной температурой и барометрическим давлением.

Предельное значение парциального давления Е в мм рт. ст. соответствует полному насыщению воздуха водяным паром Fмакс в г/м3 и возникновению его конденсации, происходящей обычно на материальных поверхностях, граничащих с влажным воздухом или на поверхности пылинок и аэрозолей, содержащихся в нем во взвешенном состоянии.

Конденсация на поверхности ограждающих конструкций обычно вызывает нежелательное увлажнение этих конструкций; конденсация на поверхности аэрозолей, взвешенных во влажном воздухе, связана с легким образованием туманов в атмосфере, загрязненной промышленными выбросами, копотью и пылью. Абсолютные значения величин Е в мм рт. ст. и F в г/м3 близки между собой при обычных температурах воздуха отапливаемых помещений, а при t=16° С они равны друг другу.

С повышением температуры воздуха величины Е и F растут. При постепенном понижении температуры влажного воздуха величины е и f, имевшие место в ненасыщенном воздухе с начальной более высокой температурой, достигают предельных максимальных значений, поскольку эти значения уменьшаются с понижением температуры. Температура, при которой воздух достигает полного насыщения, называется температурой точки росы или просто точкой росы.

Значения величин Е для влажного воздуха с различной температурой (при барометрическом давлении 755 мм рт. ст.) указаны в приложении I.


Рис. VI.3. Зависимость парциального давления насыщенного водяного пара от температуры
Рис. VI.3. Зависимость парциального давления насыщенного водяного пара от температуры
При отрицательных температурах следует иметь в виду, что давление насыщенного водяного пара над льдом меньше давления над переохлажденной водой. Это видно из рис. VI.3, на котором представлена зависимость парциального давления насыщенного водяного пара Е от температуры.

В точке О, которая называется тройной, пересекаются границы трех фаз: льда, воды и пара. Если продолжить пунктиром кривую линию, отделяющую жидкую фазу от газообразной (воду от пара), она пройдет выше границы твердой и газообразной фаз (пара и льда), что свидетельствует о более высоких значениях парциальных давлений насыщенного водяного пара над переохлажденной водой.

Степень насыщения влажного воздуха водяным паром выражается относительным парциальным давлением или относительной влажностью.

Относительная влажность ср является отношением парциального давления водяного пара е в рассматриваемой воздушной среде к максимальному значению этого давления Е, возможному при данной температуре. В физическом отношении величина ? безразмерна и ее значения могут изменяться от 0 до 1; в строительной практике величину относительной влажности обычно выражают в процентах:



Относительная влажность имеет большое значение как в гигиеническом, так и в техническом отношении. Величина ? связана с интенсивностью испарения влаги, в частности, с поверхности кожи человека. Нормальной для постоянного пребывания человека считается относительная влажность в пределах от 30 до 60%. Величина ? характеризует также процесс сорбции, т. е. поглощения влаги пористыми гигроскопическими материалами, находящимися в контакте с воздушной влажной средой.

Наконец, величина ? определяет процесс конденсации влаги как на пылинках и других взвешенных частицах, содержащихся в воздушной среде, так и на поверхности ограждающих конструкций. Если воздух с определенным влагосодержанием подвергнуть нагреванию, то относительная влажность нагретого воздуха понизится, поскольку величина парциального давления водяного пара е останется постоянной, а максимальное его значение Е увеличится с повышением температуры, см. формулу (VI.3).

Наоборот, при охлаждении воздуха с неизменным влагосодержанием, его относительная влажность будет увеличиваться из-за уменьшения величины Е.

При некоторой температуре максимальное значение парциального давления Е окажется равным величине е, имеющейся в воздухе, а относительная влажность ? — равной 100%, что соответствуе точке росы. При дальнейшем понижении температуры парциальное давление остается постоянным (максимальным), а излишнее количество влаги конденсируется, т. е. переходит в жидкое состояние. Таким образом, процессы нагревания и охлаждения воздуха связаны с изменениями его температуры, относительной влажности, а следовательно, и первоначального объема.


За основные величины при резких изменениях температуры влажного воздуха (например, при расчетах вентиляционных процессов) часто принимают его влагосодержание и теплосодержание (энтальпию).

Влагосодержание влажного воздуха d представляет отношение массы водяного пара Мп к единице массы сухого воздуха Мв. Масса. газообразного вещества может быть выражена как произведение количества молей (или парциального давления газа) на его молекулярный вес, а потому:



где 18 и 29 — молекулярные веса водяного пара и сухого воздуха Р=Рев — общее давление влажного воздуха.

При постоянном общем давлении влажного воздуха (например, Р=1) его влагосодержание определяется только парциальным давлением водяного пара



Плотность влажного воздуха уменьшается с увеличением парциального давления по линейному закону.

Существенное различие молекулярных весов водяного пара и сухого воздуха приводит к повышению абсолютной влажности и парциального давления в наиболее теплых зонах (обычно в верхней зоне) помещений, в соответствии с закономерностями, описанными в гл. III.

Теплосодержание I (энтальпия) влажного ненасыщенного воздуха равно:



где ср — удельная теплоемкость влажного воздуха, равная 0,24+0,47d (0,24 — теплоемкость сухого воздуха; 0,47 — теплоемкость водяного пара); t — температура,°С; 595 — удельная теплота испарения при 0°С, ккал/кг; d — влагосодержание влажного воздуха.

Изменение всех параметров влажного воздуха (например, при колебаниях его температуры) можно установить по I — d диаграмме, основными величинами которой являются теплосодержание I и влагосодержание d воздуха при среднем значении барометрического давления.

Рис. VI.4. Схема построения диаграммы теплосодержания и влагосодержания воздуха
Рис. VI.4. Схема построения диаграммы теплосодержания и влагосодержания воздуха
На I — d диаграмме теплосодержание I отложено по оси ординат, а проекции влагосодержания d — по оси абсцисс; на эту ось спроектированы истинные значения влагосодержания с наклонной оси, расположенной под углом в 135° к оси ординат. Тупой угол принят в целях более четкого построения на диаграмме кривых влажности воздуха (рис. VI.4).

Линии одинакового теплосодержания (I=const) располагаются на диаграмме наклонно, а одинакового влагосодержания (d = const) — вертикально.

Кривая полного насыщения воздуха влагой ?=1 делит диаграмму на верхнюю часть, в которой воздух неполностью насыщен, и нижнюю, где воздух полностью насыщен влагой и могут происходить процессы конденсации.

В нижней части диаграммы расположена построенная в обычной сетке координат по формуле (VI.4) линия pe=f(d) роста парциальных давлений водяного пара, выражаемых в мм рт. ст.

Диаграммы теплосодержания и влагосодержания широко используются в отопительно-вентиляционной практике при расчете процессов нагревания и охлаждения воздуха, а также в сушильной технике. С помощью I — d диаграмм можно установить все необходимые параметры влажного воздуха (теплосодержание, влагосодержание, температуру, точку росы, относительную влажность, парциальное давление), если известны только два из этих параметров.

Примечания

1. Это давление иногда называют упругостью водяного пара.