Конструирование своими руками

При наличии инженерно-конструкторской жилки многое можно смастерить своими руками. В этой книге предлагается несколько достаточно простых схем, собрав которые можно не только получить удовольствие от занятия любимым делом, но и сделать вполне конкретные устройства, полезные с чисто практической точки зрения.

Сконструировали все эти приборы школьники из тульского клуба научно-технического творчества молодежи «Электрон». В свое время схемы этих устройств были опубликованы в периодических изданиях, но, поскольку издания в основном были предназначены для узкого круга специалистов, широкой известности эти устройства не приобрели.

Предлагаем широкой аудитории читателей воспользоваться схемами этих устройств.

Устройство для зачистки электропроводов от изоляции

Первым пунктом в порядке осуществления любого вида соединения проводов значится: «Освободить концы соединяемых проводов от изоляции на длину…». Для этого обычно предлагается использовать: нож, ножницы, бокорезы, но в результате такой зачистки, как правило, повреждается и сама металлическая жила. К тому же, если в изоляции провода имеется шелковая оплетка, удалить ее этими инструментами очень трудно.

А что если попробовать автоматизировать операцию по удалению изоляции с монтажных электропроводов? Приспособление, схема которого приведена на рис. 101, позволит не только быстро и качественно удалить с концов проводов изоляционную оболочку, но и сохранить их металлические жилы в неприкосновенной целостности.

Рис. 101. Устройство для удаления изоляции с монтажных проводов: 1 – нихромовая проволока; 2 – держатель; 3 – винт; 4 – текстолитовая пластина; 5 – кнопка; 6 – винт; 7 – токопроводящие провода; 8 – хомут.

Потребуется: текстолитовая пластина толщиной 6–10 мм и площадью около 120 х 30 мм; нихромовая проволока диаметром 0,7–0,9 мм, держатели, винты, кусочки электрического провода, кнопка и металлический хомут. Сборка приспособления не составит труда даже для начинающего электрика: все детали монтируются на текстолитовой пластине с помощью винтов. Теперь необходимо позаботиться о питании приспособления электрическим током. Напрямую включить его в домашнюю электросеть нельзя, из-за того что тонкая нихромовая проволока не в состоянии выдержать напряжение 220 В. Поэтому подключают устройство в сеть через трансформатор, вторичная обмотка которого рассчитана на напряжение 4–5 В при токе 4–5 А.

Если такого трансформатора под рукой нет, его можно намотать самостоятельно: за основу берется трансформатор марки ТВК-110Л-1, с которого удаляются все вторичные обмотки; затем наматывается новая вторичная обмотка, состоящая из 45 витков провода ПЭВ-1 диаметром 1,2 мм. Во время работы приспособления первичная обмотка трансформатора всегда должна быть подсоединена к сети, а ко вторичной кратковременно подключают нихромовую проволоку (замыкая с помощью кнопки цепь).

Работает устройство так: на 2–3 секунды нажимают кнопку, конец обрабатываемого провода вводят внутрь рабочей части нихромовой проволоки, провод поворачивают на 1–1,5 оборота. Отрезанную таким образом изоляцию легко удалить с помощью пинцета.

Регулятор мощности электропаяльника

Всем, кто когда-либо сталкивался с пайкой (даже если это было еще в детстве, в кружке «Юный техник»), прекрасно известно, как важно правильно подобрать мощность электропаяльника для осуществления паяных соединений. Ведь большая мощность дает большую температуру паяльного жала, а перегрев паяльника приводит к окислению припоя, паяные соединения получаются недостаточно прочными, а при пайке полупроводниковых приборов возможно их повреждение.

Определить на глазок степень нагрева паяльника не всегда удается даже опытному мастеру, не говоря уже о начинающих электротехниках. На помощь может прийти регулятор, позволяющий в широких пределах изменять подводимую к паяльнику мощность (рис. 102).

Рис. 102. Электронная схема регулятора мощности электропаяльника и печатная плата для сборки.

Все детали регулятора мощности монтируются на печатной плате из фольгированного стеклотекстолита. Готовый прибор помещают в корпус подставки паяльника, изготовленный из фанеры. В корпусе необходимо укрепить розетку для подключения паяльника и вывод для подключения устройства к сети. Для удобства работы на крышке этого же корпуса можно закрепить баночки с припоем и флюсом.

К такому регулятору можно подключать паяльники мощностью от 40 до 90 Вт.

Автоматы освещения

Одним из пунктов программы экономии электроэнергии значилась организация рационального освещения в малопосещаемых местах.

На рис. 103 представлена принципиальная схема автомата освещения, сборка и подключение которого к сети раз и навсегда решит вопрос экономии электроэнергии на этом участке.

Рис. 103. Электронная схема автомата освещения.

Особенно удобно это устройство для лестничного освещения в подъездах многоэтажных домов и для наружного освещения во дворах частных домов.

Подобный автомат действует на достаточно простом принципе зарядки и разрядки конденсатора: при нажатии и отпускании кнопки S1 освещение начинает работать, так как на устройство Е1 начинает подаваться питание; конденсатор С2 на этот момент включения разряжен; по мере зарядки конденсатора напряжение на его верхней (по схеме) обкладке увеличивается, а когда достигает критической величины, устройство отключает освещение.

Выключатели освещения желательно оснастить неоновыми лампочками, которые помогут найти выключатель в темноте.

Технические параметры, соблюдение которых обязательно при сборке и подключении к сети автомата освещения, следующие:

– максимальная суммарная мощность лампочек в цепи – не более 2 кВт;

– тринистор V6 должен быть установлен на радиаторе с поверхностью охлаждения около 300 см2;

– диоды V7–V10 устанавливаются на четырех радиаторах площадью по 70 см2 каждый; если же мощность нагрузки не превышает 0,5 кВт, то эти диоды и тринистор можно монтировать без радиаторов.

Собранное устройство необходимо наладить (настроить) на определенное время свечения ламп. Налаживание производится путем подбора резистора R2. Если будет использоваться предложенный на схеме резистор номиналом 2,4 МОм, то длительность горения лампочек после включения будет составлять 2–3 минуты. Если необходимо, чтобы освещение работало более продолжительное время (например, нужно срочно отремонтировать замок на квартирной двери), нежели позволяет резистор, то в схеме следует предусмотреть обычный выключатель.

Устройство помещают в изолирующий корпус и размещают на одном из этажей. Кнопки S1 с неоновыми лампочками устанавливают на каждом этаже. При суммарной мощности ламп в 2 кВт сечение проводов, которыми кнопки выключателей соединяют с устройством, должно быть не менее 1,5–2 мм2.

Терморегулятор

При проявке фотографий, разведении рыбок в аквариуме, выращивании цветов или овощей в теплице достаточно часто приходится сталкиваться с проблемой поддержания постоянной температуры определенной среды (воды или воздуха). В этом может помочь еще один самодельный прибор – электронный терморегулятор (рис. 104).

Рис. 104. Электронный терморегулятор: а – схема; б – расположение деталей на монтажной плате.

Его основой является триггер (цепь из логических элементов D1.1, D1.2 и резисторов R4, R5), на вход которого поступает напряжение с делителя, состоящего из резисторов R1, R2 и R3 (резистор R3 одновременно служит датчиком температуры). Увеличение температуры среды приводит к тому, что сопротивление резистора R3 уменьшается, а следовательно, уменьшается и подаваемое на вход триггера напряжение, от чего последний переключается. При этом на выходе триггера устанавливается напряжение низкого уровня, транзистор V2 и тринистор V3 закрываются, и нагреватель, подключенный к выходу Х1, обесточивается.

При снижении температуры (при ее определенном значении) триггер вновь переключается, на этот раз включая нагреватель.

Значения температуры, при которых происходят переключения триггера, устанавливают с помощью переменного резистора R1; за точность поддержания заданной температуры отвечает сопротивление резистора R4 (чем меньше будет его сопротивление, тем более чутким будет прибор, однако использовать резистор сопротивлением меньше 10 кОм не рекомендуется). На схеме приведены марки элементов для использования терморегулятора при мощности нагревателя 200 Вт. Если же мощность нагревателя около 2 кВт, то используется тринистор марки КУ202М и диоды Д246 (4 штуки). Тринистор и диоды в этом случае устанавливают на радиаторах для теплоотвода.

Вторая жизнь люминесцентной лампы (не является новаторством клуба «Электрон»)

Если для освещения дома используются светильники с люминесцентными лампами, то надо учитывать, что их стоимость (по сравнению с лампами накаливания) значительна. И хотя лампы дневного света служат достаточно долго, необходимость их замены время от времени все же возникает.

Продлить срок службы люминесцентных ламп и даже дать вторую жизнь лампам с перегоревшей нитью накала поможет бездроссельная схема их подключения к сетевому питанию. Схеме этой уже более четверти века, она достаточно популярна и приведена в этой книге (рис. 105).

Рис. 105. Схема сетевого питания люминесцентной лампы с перегоревшими нитями накала.

Следует отметить, что характеристики всех элементов предлагаемой схемы зависят от мощности самой лампы. Данные характеристики приведены в табл. 10.

Таблица 10. Характеристики элементов схемы питания люминесцентных ламп с перегоревшими нитями накала

Цепь из диодов VD1 и VD2 с конденсаторами С1 и С2 представляет собой двухполупериодный выпрямитель с удвоенным напряжением; при этом емкости конденсаторов определяют значение напряжения, поступающего на электроды лампы HL1 (зависимость прямая: чем больше емкость, тем выше напряжение).

В момент подключения к сетевому питанию импульс напряжения на выходе выпрямителя достигает 600 В. Сочетание диодов VD3 и VD4 с конденсаторами С3 и С4 дополнительно повышает напряжение зажигания, доводя его значение приблизительно до 900 В. При таком напряжении тлеющий разряд между электродами лампы возникает даже при отсутствии нитей накала. (У конденсаторов С3 и С4 есть и еще одна функция – они гасят радиопомехи, которые возникают при ионизационном разряде внутри стеклянной трубки лампы).

Лампа зажглась, ее сопротивление уменьшилось, следовательно, уменьшилось и напряжение на электродах лампы, что обеспечивает ее нормальную работу при напряжении около 220 В (обычный показатель для бытовых электросетей). Рабочее напряжение для лампы определяется номиналом резистора R1.

В принципе цепь из диодов VD3 и VD4 и конденсаторов С3 и С4 из схемы можно исключить, но в этом случае снижается пусковая надежность лампы (надежность зажигания).

Для составления подобной схемы потребуются следующие радиодетали:

– в качестве конденсаторов С1 и С2 используют бумажные или металлобумажные конденсаторы типа МБГ, КБГ, КБЛП, МБГО или МБГП, рассчитанные на напряжение 600 В;

– конденсаторы С3 и С4 могут быть типа КСГ, КСО, СГМ или СГО (со слюдяным диэлектриком). Они должны быть рассчитаны на рабочее напряжение не менее 600 В;

– резистор R1 – проволочный, его мощность должна соответствовать мощности включаемой лампы; можно использовать резисторы типа ПЭ, ПЭВ, ПЭВР;

– если в цепи присутствуют диоды марок Д205 или Д231 (при подключении ламп мощностью 80 или 100 Вт), то их установку следует производить на радиаторах (для отвода тепла).

Изложенная схема подключения люминесцентной лампы к сетевому питанию не только не имеет громоздкого дросселя и ненадежного пускателя, но и обеспечивает включение лампы без задержки, ее бесшумную работу и отсутствие неприятного мигания.

Подобные приборы, сконструированные по предложенным схемам, обычно не пылятся в чуланах и на чердаках, а занимают достойное место в электросети дома или в ящике с инструментами.